97 research outputs found

    Lymph Node Involvement in Recurrent Serous Borderline Ovarian Tumors: Current Evidence, Controversies, and a Review of the Literature.

    Get PDF
    Borderline ovarian tumors (BOTs) account for 10-20% of epithelial ovarian neoplasms. They are characterized by their lack of destructive stromal invasion. In comparison to invasive ovarian cancers, BOTs occur in younger patients and have better outcome. Serous borderline ovarian tumor (SBOT) represents the most common subtype of BOT. Complete surgical staging is the current standard management but fertility-sparing surgery is an option for SBOT patients who are at reproductive age. While most cases of SBOTs have an indolent course with favorable prognosis, late recurrence and malignant transformation can occur, usually in the form of low-grade serous carcinoma (LGSC). Thus, assessment of the recurrence risk is essential for the management of those patients. SBOTs can be associated with lymph node involvement (LNI) in up to 30% of patients who undergo lymph node dissection at diagnosis, and whether LNI affects prognosis is controversial. The present review suggests that recurrent SBOTs with LNI have poorer oncological outcomes and highlights the biases due to the scarcity of reports in the literature. Preventing SBOTs from recurring and becoming invasive overtime and a more profound understanding of the underlying mechanisms at play are necessary

    Effects of the cannabinoid CB1 antagonist rimonabant on hepatic mitochondrial function in rats fed a high-fat diet

    Get PDF
    The aim of this study was to investigate the effect of rimonabant treatment on hepatic mitochondrial function in rats fed a high-fat diet. Sprague-Dawley rats fed a high-fat diet (35% lard) for 13 wk were treated with rimonabant (10 mg·kg−1·day−1) during the last 3 wk and matched with pair-fed controls. Oxygen consumption with various substrates, mitochondrial enzyme activities on isolated liver mitochondria, and mitochondrial DNA quantity were determined. Body weight and fat mass were decreased in rats treated with rimonabant compared with pair-fed controls. Moreover, the serum adiponectin level was increased with rimonabant. Hepatic triglyceride content was increased, while serum triglycerides were decreased. An increase of mitochondrial respiration was observed in rats treated with rimonabant. The increase of mitochondrial respiration with palmitoyl-CoA compared with respiration with palmitoyl-l-carnitine stating that the entry of fatty acids into mitochondria via carnitine palmitoyltransferase I was increased in rats treated with rimonabant. Moreover, rimonabant treatment led to a reduction in the enzymatic activity of ATP synthase, whereas the quantity of mitochondrial DNA and the activity of citrate synthase remained unchanged. To summarize, rimonabant treatment leads to an improvement of hepatic mitochondrial function by increasing substrate oxidation and fatty acid entry into mitochondria for the β-oxidation pathway and by increasing proton leak. However, this increase of mitochondrial oxidation is regulated by a decrease of ATP synthase activity in order to have only ATP required for the cell function

    Warburg-like effect is a hallmark of complex I assembly defects

    Get PDF
    Due to its pivotal role in NADH oxidation and ATP synthesis, mitochondrial complex I (CI) emerged as a crucial regulator of cellular metabolism. A functional CI relies on the sequential assembly of nuclear- and mtDNA-encoded subunits; however, whether CI assembly status is involved in the metabolic adaptations in CI deficiency still remains largely unknown. Here, we investigated the relationship between CI functions, its structure and the cellular metabolism in 29 patient fibroblasts representative of most CI mitochondrial diseases. Our results show that, contrary to the generally accepted view, a complex I deficiency does not necessarily lead to a glycolytic switch, i.e. the so-called Warburg effect, but that this particular metabolic adaptation is a feature of CI assembly defect. By contrast, a CI functional defect without disassembly induces a higher catabolism to sustain the oxidative metabolism. Mechanistically, we demonstrate that reactive oxygen species overproduction by CI assembly intermediates and subsequent AMPK-dependent Pyruvate Dehydrogenase inactivation are key players of this metabolic reprogramming. Thus, this study provides a two-way-model of metabolic responses to CI deficiencies that are central not only in defining therapeutic strategies for mitochondrial diseases, but also in all pathophysiological conditions involving a CI deficiency

    Acute intermittent porphyria causes hepatic mitochondrial energetic failure in a mouse model

    Get PDF
    Acute intermittent porphyria (AIP), an inherited hepatic disorder, is due to a defect of hydroxymethylbilane synthase (HMBS), an enzyme involved in heme biosynthesis. AIP is characterized by recurrent, life-threatening attacks at least partly due to the increased hepatic production of 5-aminolaevulinic acid (ALA). Both the mitochondrial enzyme, ALA synthase (ALAS) 1, involved in the first step of heme biosynthesis, which is closely linked to mitochondrial bioenergetic pathways, and the promise of an ALAS1 siRNA hepatic therapy in humans, led us to investigate hepatic energetic metabolism in Hmbs KO mice treated with phenobarbital. The mitochondrial respiratory chain (RC) and the tricarboxylic acid (TCA) cycle were explored in the Hmbs−/− mouse model. RC and TCA cycle were significantly affected in comparison to controls in mice treated with phenobarbital with decreased activities of RC complexes I (−52%, **p < 0.01), II (−50%, **p < 0.01) and III (−55%, *p < 0.05), and decreased activity of α-ketoglutarate dehydrogenase (−64%, *p < 0.05), citrate synthase (−48%, **p < 0.01) and succinate dehydrogenase (−53%, *p < 0.05). Complex II-driven succinate respiration was also significantly affected. Most of these metabolic alterations were at least partially restored after the phenobarbital arrest and heme arginate administration. These results suggest a cataplerosis of the TCA cycle induced by phenobarbital, caused by the massive withdrawal of succinyl-CoA by ALAS induction, such that the TCA cycle is unable to supply the reduced cofactors to the RC. This profound and reversible impact of AIP on mitochondrial energetic metabolism offers new insights into the beneficial effect of heme, glucose and ALAS1 siRNA treatments by limiting the cataplerosis of TCA cycle

    Assembly defects induce oxidative stress in inherited mitochondrial complex I deficiency

    Get PDF
    Complex I (CI) deficiency is the most common respiratory chain defect representing more than 30% of mitochondrial diseases. CI is an L-shaped multi-subunit complex with a peripheral arm protruding into the mitochondrial matrix and a membrane arm. CI sequentially assembled into main assembly intermediates: the P (pumping), Q (Quinone) and N (NADH dehydrogenase) modules. In this study, we analyzed 11 fibroblast cell lines derived from patients with inherited CI deficiency resulting from mutations in the nuclear or mitochondrial DNA and impacting these different modules. In patient cells carrying a mutation located in the matrix arm of CI, blue native-polyacrylamide gel electrophoresis (BN-PAGE) revealed a significant reduction of fully assembled CI enzyme and an accumulation of intermediates of the N module. In these cell lines with an assembly defect, NADH dehydrogenase activity was partly functional, even though CI was not fully assembled. We further demonstrated that this functional N module was responsible for ROS production through the reduced flavin mononucleotide. Due to the assembly defect, the FMN site was not re-oxidized leading to a significant oxidative stress in cell lines with an assembly defect. These findings not only highlight the relationship between CI assembly and oxidative stress, but also show the suitability of BN-PAGE analysis in evaluating the consequences of CI dysfunction. Moreover, these data suggest that the use of antioxidants may be particularly relevant for patients displaying a CI assembly defect

    The Role of the BMP Signaling Antagonist Noggin in the Development of Prostate Cancer Osteolytic Bone Metastasis

    Get PDF
    Members of the BMP and Wnt protein families play a relevant role in physiologic and pathologic bone turnover. Extracellular antagonists are crucial for the modulation of their activity. Lack of expression of the BMP antagonist noggin by osteoinductive, carcinoma-derived cell lines is a determinant of the osteoblast response induced by their bone metastases. In contrast, osteolytic, carcinoma-derived cell lines express noggin constitutively. We hypothesized that cancer cell-derived noggin may contribute to the pathogenesis of osteolytic bone metastasis of solid cancers by repressing bone formation. Intra-osseous xenografts of PC-3 prostate cancer cells induced osteolytic lesions characterized not only by enhanced osteoclast-mediated bone resorption, but also by decreased osteoblast-mediated bone formation. Therefore, in this model, uncoupling of the bone remodeling process contributes to osteolysis. Bone formation was preserved in the osteolytic lesions induced by noggin-silenced PC-3 cells, suggesting that cancer cell-derived noggin interferes with physiologic bone coupling. Furthermore, intra-osseous tumor growth of noggin-silenced PC-3 cells was limited, most probably as a result of the persisting osteoblast activity. This investigation provides new evidence for a model of osteolytic bone metastasis where constitutive secretion of noggin by cancer cells mediates inhibition of bone formation, thereby preventing repair of osteolytic lesions generated by an excess of osteoclast-mediated bone resorption. Therefore, noggin suppression may be a novel strategy for the treatment of osteolytic bone metastases

    The aldehyde dehydrogenase enzyme 7A1 is functionally involved in prostate cancer bone metastasis

    Get PDF
    High aldehyde dehydrogenase (ALDH) activity can be used to identify tumor-initiating and metastasis-initiating cells in various human carcinomas, including prostate cancer. To date, the functional importance of ALDH enzymes in prostate carcinogenesis, progression and metastasis has remained elusive. Previously we identified strong expression of ALDH7A1 in human prostate cancer cell lines, primary tumors and matched bone metastases. In this study, we evaluated whether ALDH7A1 is required for the acquisition of a metastatic stem/progenitor cell phenotype in human prostate cancer. Knockdown of ALDH7A1 expression resulted in a decrease of the α2hi/αvhi/CD44+ stem/progenitor cell subpopulation in the human prostate cancer cell line PC-3M-Pro4. In addition, ALDH7A1 knockdown significantly inhibited the clonogenic and migratory ability of human prostate cancer cells in vitro. Furthermore, a number of genes/factors involved in migration, invasion and metastasis were affected including transcription factors (snail, snail2, and twist) and osteopontin, an ECM molecule involved in metastasis. Knockdown of ALDH7A1 resulted in decreased intra-bone growth and inhibited experimentally induced (bone) metastasis, while intra-prostatic growth was not affected. In line with these observations, evidence is presented that TGF-β, a key player in cancer invasiveness and bone metastasis, strongly induced ALDH activity while BMP7 (an antagonist of TGF-β signaling) down-regulated ALDH activity. Our findings show, for the first time, that the ALDH7A1 enzyme is functionally involved in the formation of bone metastases and that the effect appeared dependent on the microenvironment, i.e., bone versus prostate

    The molecular signature of the stroma response in prostate cancer-induced osteoblastic bone metastasis highlights expansion of hematopoietic and prostate epithelial stem cell niches

    Get PDF
    The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis

    The Appearance and Modulation of Osteocyte Marker Expression during Calcification of Vascular Smooth Muscle Cells

    Get PDF
    Vascular calcification is an indicator of elevated cardiovascular risk. Vascular smooth muscle cells (VSMCs), the predominant cell type involved in medial vascular calcification, can undergo phenotypic transition to both osteoblastic and chondrocytic cells within a calcifying environment.In the present study, using in vitro VSMC calcification studies in conjunction with ex vivo analyses of a mouse model of medial calcification, we show that vascular calcification is also associated with the expression of osteocyte phenotype markers. As controls, the terminal differentiation of murine calvarial osteoblasts into osteocytes was induced in vitro in the presence of calcifying medium (containing ß-glycerophosphate and ascorbic acid), as determined by increased expression of the osteocyte markers DMP-1, E11 and sclerostin. Culture of murine aortic VSMCs under identical conditions confirmed that the calcification of these cells can also be induced in similar calcifying medium. Calcified VSMCs had increased alkaline phosphatase activity and PiT-1 expression, which are recognized markers of vascular calcification. Expression of DMP-1, E11 and sclerostin was up-regulated during VSMC calcification in vitro. Increased protein expression of E11, an early osteocyte marker, and sclerostin, expressed by more mature osteocytes was also observed in the calcified media of Enpp1(-/-) mouse aortic tissue.This study has demonstrated the up-regulation of key osteocytic molecules during the vascular calcification process. A fuller understanding of the functional role of osteocyte formation and specifically sclerostin and E11 expression in the vascular calcification process may identify novel potential therapeutic strategies for clinical intervention

    An improved model to study tumor cell autonomous metastasis programs using MTLn3 cells and the Rag2−/− γc−/− mouse

    Get PDF
    The occurrence of metastases is a critical determinant of the prognosis for breast cancer patients. Effective treatment of breast cancer metastases is hampered by a poor understanding of the mechanisms involved in the formation of these secondary tumor deposits. To study the processes of metastasis, valid in vivo tumor metastasis models are required. Here, we show that increased expression of the EGF receptor in the MTLn3 rat mammary tumor cell-line is essential for efficient lung metastasis formation in the Rag mouse model. EGFR expression resulted in delayed orthotopic tumor growth but at the same time strongly enhanced intravasation and lung metastasis. Previously, we demonstrated the critical role of NK cells in a lung metastasis model using MTLn3 cells in syngenic F344 rats. However, this model is incompatible with human EGFR. Using the highly metastatic EGFR-overexpressing MTLn3 cell-line, we report that only Rag2−/−γc−/− mice, which lack NK cells, allow efficient lung metastasis from primary tumors in the mammary gland. In contrast, in nude and SCID mice, the remaining innate immune cells reduce MTLn3 lung metastasis formation. Furthermore, we confirm this finding with the orthotopic transplantation of the 4T1 mouse mammary tumor cell-line. Thus, we have established an improved in vivo model using a Rag2−/− γc−/− mouse strain together with MTLn3 cells that have increased levels of the EGF receptor, which enables us to study EGFR-dependent tumor cell autonomous mechanisms underlying lung metastasis formation. This improved model can be used for drug target validation and development of new therapeutic strategies against breast cancer metastasis formation
    corecore